pytb

Apr 29, 2020

Contents:

1 Quickstart

2 Installation

3 Development

3.1 Command Line Interface
3.2 pytb.config module
3.3 pytb.core module
3.4 pytb.importlib module
3.5 pytb.io module
3.6 pytb.itertools module
3.7 pytb.notification module
3.8 pytb.rdb module
3.9 pytb.schedule module
3.10 Indices and tables
Python Module Index
Index

pytb

-toolbhox

This is a collection of useful snippets I find myself to use regularly during prototyping.

Most of the functions are especially useful when working on remote machines via jupyter notebooks (e.g. a Jupyter-
Hub) with long-running processes (e.g. Deeplearning).

Checkout the Quickstart section for common usecases and example code.
View the complete documentation

View the code

Contents: 1

https://py-toolbox.readthedocs.io/en/latest/?badge=latest
https://py-toolbox.readthedocs.io/en/latest/
https://github.com/dangrie158/py-toolbox

pytb

2 Contents:

CHAPTER 1

Quickstart

Monitor long running tasks and get notified by email if something goes wrong or the job has finished
Schedule task execution

Debug Remotely over a TCP connection

Load Jupyter Notebooks as Python Modules

Reload modules when importing again (do not cache the result)

Mirroring all output of a script to a file

Flexibly test a number possible configurations of a function

Automatically configure the framework

Configure defaults

https://py-toolbox.readthedocs.io/en/latest/modules/notification.html#setup-monitoring-for-your-long-running-tasks
https://py-toolbox.readthedocs.io/en/latest/cli.html#task-scheduler-pytb-schedule
https://py-toolbox.readthedocs.io/en/latest/modules/rdb.html#remote-debugging
https://py-toolbox.readthedocs.io/en/latest/modules/importlib.html#importing-jupyter-notebooks-as-python-modules
https://py-toolbox.readthedocs.io/en/latest/modules/importlib.html#automatically-reload-modules-and-packages-when-importing
https://py-toolbox.readthedocs.io/en/latest/modules/io.html#redirecting-output-streams
https://py-toolbox.readthedocs.io/en/latest/modules/itertools.html#flexibly-test-a-number-possible-configurations-of-a-function
https://py-toolbox.readthedocs.io/en/latest/modules/core.html#autoconfigure-toolbox-frameworks
https://py-toolbox.readthedocs.io/en/latest/modules/config.html#configure-the-toolkit

pytb

4 Chapter 1. Quickstart

CHAPTER 2

Installation

via pip:
pip install py-toolbox

or via distutils:

git clone https://github.com/dangriel58/py-toolbox.git pytb
cd pytb

python setup.py install

pytb

6 Chapter 2. Installation

CHAPTER 3

Development

Clone the repo and install the development requirements. After this you can install the package in development mode
to just link the sources into your python path.

git clone https://github.com/dangriel58/py-toolbox.git pytb
cd pytb

direnv allow

1f you're not using direnv, you really should

otherwise create a new virtualenv for the package

pip install -r dev-requirements.txt
python3 setup.py develop

make test

3.1 Command Line Interface

The toolkit can be run as an executable (e.g. using the —m switch of the python command or by using the automatically
created pytb command)

3.1.1 Task Scheduler pytb schedule

Command line interface for the schedule module.

Currently only the ——at mode is supported using a cron-like syntax.

The cron-like pattern has the following order: min hour day month weekday. The following pattern rules are supported:
* i sequence contains only the element i
* « indicates that all values possible for this part are included

e i, 7,k specifies a list of possible values

pytb

e i-7 specifies a range of values including 7
e i-7j/s additionally specifies the step-size

For weekday, the values 0 and 7 both represent sunday.

usage: pytb schedule [-h] [-—-at * * x x %] script

positional arguments:
script script path or module name to run
args additional parameter passed to the script

optional arguments:
-h, —--help show this help message and exit
-—at * x x * % Execute the task each time the cron-like pattern matches

3.1.2 Notifications for long running scripts

Command line interface for the notification module.

You can choose a build-in notifier via the via—email and via-stream switches. Notification rules can be config-
ured via the ——when-done, ——when-stalled and ——every options.

usage: pytb notify [-h] [-—-every X] [--when-stalled X] [--when-done]
{via-email, via-stream}

positional arguments:
{via-email, via-stream}

notifier
optional arguments:
-h, —-help show this help message and exit
—-—every X Send a notification every X seconds
—--when-stalled X Send a notification if the script seems to be stalled
for more than X seconds
—--when-done Send a notification whenever the script finishes
E-Mail Notifier
usage: pytb notify via-email [-h] [--recipients RECIPIENTS [RECIPIENTS ...]]
[-—smtp—-host SMTP_HOST] [—-—-smtp-port SMTP_PORT]
[-—sender SENDER] [—--use-ssl] [-m]
script
positional arguments:
script script path or module name to run
args additional parameter passed to the script
optional arguments:
-h, --help show this help message and exit
——-recipients RECIPIENTS [RECIPIENTS ...]

Recipient addresses for the notifications
—-—-smtp-host SMTP_HOST

Address of the external SMTP Server used to send

notifications via E-Mail

(continues on next page)

8 Chapter 3. Development

pytb

(continued from previous page)

—-—smtp-port SMTP_PORT
Port the external SMTP Server listens for incoming

connections
——-sender SENDER Sender Address for notifications
——use-ssl Use a SSL connection to communicate with the SMTP
server
-m Load an executable module or package instead of a file
Note: If you want to specify multiple recipients as the last option in your command line, use —— to seperate the

argument list from the script option with multiple arguments.

Example:
pytb notify --when-done --when-stalled 5 via-email --recipients recipientl@mail.com_
—recipient2@mail.com —-- myscript.py paraml —--param2=val

Stream Notifier

usage: pytb notify via-stream [-h] [--stream STREAM] [-m] script

positional arguments:
script script path or module name to run
args additional parameter passed to the script

optional arguments:

-h, —--help show this help message and exit

——stream STREAM The writable stream. This can be a filepath or the special
values "~<stdout>' or “<stderr>"

-m Load an executable module or package instead of a file

Note: If you want to use the stdout or stderr stream as output, simply use the constants <stdout> or
<stderr> for the stream parameter. If your shell tries to replace those values (e.g. zsh), quote the strings.

Example:

python -m pytb notify —--every 5 via-stream --stream="<stdout>" -m http.server

3.1.3 Remote Debugger pytb rdb
A simple command line interface for the remote debugger rdb. The subcommand expects a function parameter which
should be either client or server.

The server function exposes a similar interface to the original pdb command line. Additionally you can specify the
interface and port to bind to and listening for incoming connections as well as the verbosity of the debug server.

usage: pytb rdb server [-h] [--host HOST] [--port PORT] [--patch-stdio]
[-c commands] [-m]
script

positional arguments:
script script path or module name to run
args additional parameter passed to the script

optional arguments:

(continues on next page)

3.1. Command Line Interface 9

pytb

(continued from previous page)

-h, --help show this help message and exit

——host HOST The interface to bind the socket to

——port PORT The port to listen for incoming connections

—--patch-stdio Redirect stdio streams to the remote client during debugging
—c commands commands executed before the script is run

-m Load an executable module or package instead of a file

More information on the —c and —m parameters can be found in the pdb Module Documentation

The client function creates anew pytb.rdb.RdIbC1ient instance that connects to the specified host and port.

usage: pytb rdb client [-h] [--host HOST] [--port PORT]

optional arguments:

-h, --help show this help message and exit

——host HOST Remote host where the debug sessino is running
—-—port PORT Remote port to connect to

Both functions fall back to the values provided in the effective .pytb.conf file (see pytb.config. Config) for the
——host, ——port and ——patch-stdio parameters

Example usage:

Start a debug server listening on the interface and port read from the .pytb.conf file. This command does not start
script execution until a client is connected:

pytb rdb server -c continue myscript.py argl arg2 —--flag

From another terminal (possibly on another machine) connect to the session. Since we passed the ‘continue’ command
when starting the server, the script will be executed until the end or to the first unhandled exception as soon as the
client connects. Without this, script execution would be stopped before the first line is executed and the client would
be presented with a debug shell. Because we do not specify a ——port argument, the default port pecified in the config
file is used.

’python -m pytb rdb client --host 192.168.1.15

3.2 pytb.config module

3.2.1 Configure the Toolkit

Some modules use a configuration based on a config-file hierarchy. This hierarchy starts in the current working
directory moving to parent folders until the root of the filesystem is reached.

The hierarchy is then traversed in reverse order and in each folder, a file named .pytb.conf is loaded if avail-
able. The API docs for the module reference when a configuration is used. The function of the config parameters is
documented in the Default Config

3.2.2 Default Config

The pytb package provides a config file with sane default values that should work in most cases. The file is loaded
as first file overwriting the hard-coded defaults in the pytb. config. Config class but being overwritten by any
more-specific config file in the lookup hierarchy.

10 Chapter 3. Development

https://docs.python.org/3/library/pdb.html

pytb

default configuration values for the toolkit

configures the behaviour of pytb.init()

[init]
disable the module chache after initialisation
disable_module_cache = no

install the notebook loader hook into the import system
install_notebook_loader = yes

install rdb as default debugger called when calling the built—-in 'breakpoint ()'
install_rdb_hook = yes

remote debugger

[rdb]

the default port the debugger listens on and the client connects to
port = 8268

bind address for the debug server
bind_to = 0.0.0.0

address the client tries to connect to
host = 127.0.0.1

whether or not to redirect the servers stdio streams to the debugging client
patch_stdio = no

#
[module_cache]

these packages are exempt from reloading

it does not make much sense to reload built-ins. Additionally there
are some modules in the stdlib that do not like to be reloaded and
throw an error, so we exclude them here as they do not make sense
to live-reload them anyway

non_reloadable_packages =

re

importlib

pkg_resources

jsonschema

numpy

IPython

S R W R W

automatic task progress notification via E-Mail

[notify]

smtp server setup used to send notifications to the user
smtp_host = 127.0.0.1

smtp_port 25

smtp_ssl = False

sender address to use. If empty, use the machines FQDN
sender =

a list of email-addresses where notifications are sent
email_addresses =

3.2. pytb.config module 11

pytb

3.2.3 APl Documentation

This module handles the .pytb.conf files

class pytb.config.Config (verbose: Optional[bool] = False)
Bases: configparser.ConfigParser

Provides functionality to load a hierarchy of . pytb.config files.

Parameters verbose — output debugging information including the paths that will be checked for

config files as well as all files that are actually parsed

config file name = '.pytb.conf'
filename of config files

default_config file = PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/py-t

The loaction of the default config file (in the root of the package)

static get_config file_locations () — Sequence[pathlib.Path]

Get a list of possible configuration file paths by starting at the current working directory and add all parent

paths until the root directory is reached

The default config file location is always the first path in the list. More specific configuration files should

appear later in the list (from unspecific to more specific)

getlist (*args, **kwargs) — Sequence[str]
get a list of values that are seperated by a newline character

>>> config = Config()
>>> config.read_string ("""
[test]
list=a
b
c
..)
>>> config.getlist ('test', 'list")
['a', 'b', 'c']

reload () — None

load the configuration by initialising the default values from Config._defaults and then traversing all pos-

sible configuration files overwriting all newly found values

pytb.config.current_config = <pytb.config.Config object>
An instance of config that is automatically initialized when importing the module

3.3 pytb.core module

3.3.1 Autoconfigure toolbox frameworks

The pytb package provides an init () method that allows to automatically configure certain frameworks from the

toolbox.

The behavior of this method is configured based on the values in pytb. config. current_config.

The method has a parameter verbose which defaults to True which enables some output while initializing the

subsystems. If you want to quietly initialize, set verbose explicitly to False.

To avoid problems with multiple initializations, the method raises a Runt imeException if init is called a second

time.

12 Chapter 3. Development

pytb

>>> from pytb.core import init

>>> init ()

'disable_module_cache' not set, skipping global context
installing NotebookLoader into 'sys.meta_path'

installing RDB as default debugger in 'sys.breakpointhook'

3.3.2 API Documentation
3.4 pytb.importlib module

3.4.1 Importing Jupyter-Notebooks as python modules

>>> from pytb.importlib import no_module_cache, NotebookLoader
>>> loader = NotebookLoader ()

>>> loader.install ()

>>> # will try to import the Notebook in './my/Notebook.ipynb'
>>> import pytb.test.fixtures.Notebook

>>> loader.uninstall ()

NotebookLoaders can also be used as ContextManagers to only temporarly affect module loading and automatically
remove the loader hook when exiting the context.

>>> from pytb.importlib import no_module_cache, NotebookLoader
>>> with NotebookLoader () :
. import pytb.test.fixtures.Notebook # will load the notebook
>>> # next line will fail if there is no package named 'my'
>>> import pytb.test.fixtures.Notebook

3.4.2 Automatically reload modules and packages when importing
This is especially useful in combination with a Notebook Loader. You can simply run an import cell again to reload
the Notebook Code from disk.

Use a NoModuleCacheContext to force reloading of modules that are imported. An instance of the ContextMan-
ager is available as pytb.importlib.no_module_cache

Some packages can not be reloaded as they define a global state that does not like to be created again. The default
config defines a sane set of packages that are ignored by the reloader.

>>> from pytb.importlib import no_module_cache, NotebookLoader

>>> loader = NotebookLoader () .install ()

>>> # load the module if it was not previously loaded

>>> import pytb.test.fixtures.Notebook

>>> with no_module_cache:
force reevaluation of the module (will execute all code again)
import pytb.test.fixtures.Notebook

3.4. pytb.importlib module 13

pytb

3.4.3 APl Documentation
3.5 pytb.io module

3.5.1 Redirecting output streams

The io Module offers function to temporarly redirect or mirror stdout and stderr streams to a file

Stream redirection:

>>> from pytb.io import redirected_stdout
>>> with redirected_stdout ('stdout.txt'):
print ('this will be written to stdout.txt and not to the console')

Stream mirroring

>>> from pytb.io import mirrored_stdstreams
>>> with mirrored_stdstreams ('alloutput.txt'):
print ('this will be written to alloutput.txt AND to the console')

3.5.2 API Documentation

This module contains a set of helpers for common Input/Output related tasks

class pytb.io.Tee (*args)
Bases: object

A N-ended T-piece (manifold) for File objects that supports writing. This is useful if you want to write to
multiple files or file-like objects (e.g. sys.stdout, sys.stderr) simultaneously.

>>> import sys, io
>>> file_like = i0.StringIO()
>>> combined = Tee(file_like, sys.stdout)

>>> _ = combined.write('This is printed into a file and on stdout\n')
This is printed into a file and on stdout
>>> assert file_like.getvalue() == 'This is printed into a file and on stdout\n'

close () — None
Close all connected files

This does avoid closing sys.__stdout___and sys.__stderr_

>>> import sys, io
>>> file_like = io.StringIO()

>>> combined = Tee(file_like, sys.__stdout_)
>>> file_like.closed
False

>>> combined.close ()

>>> file_like.closed

True

>>> sys.stdout.closed
False

14 Chapter 3. Development

pytb

flush () — None
Flush any buffers of all connected file output-streams

write (text: str) — int
Write to the manifold which, in turn, writes to all connected output streams

Parameters text — text to write to the manifold
Returns the number of bytes written to the last stream in the Manifold

pytb.io.mirrored_stdout (file: Union[str, TextlO, pytb.io.Tee]) — Generator[TextIO, None, None]
ContextManager that mirrors stdout to a given file-like object and restores the original state when leaving the
context

This is essentially using a Tee piece manifold to file and sys.stdout as a parameter to
redirected_stdout

Parameters file - string or file-like object to mirror stdout to. If passed a string, the file is opened
for writing and closed after the contextmanager exits

>>> import io
>>> outfile = i1i0.StringIO()
>>> with mirrored_stdout (outfile) :
print ('this is written to outfile and stdout')
this is written to outfile and stdout
>>> assert outfile.getvalue() == 'this is written to outfile and stdout\n'

pytb.io.mirrored_stdstreams (file: Union[str, TextlO, pytb.io.Tee]) — Generator[TextlO, None,

None]
Version of mirrored stdout () but mirrors stderr and stdout to file

see mirrored _stdout ()

pytb.io.redirected_stderr (file: Union/[str, TextlO, pytb.io.Tee]) — Generator[TextlO, None, None]
Same functionality as redirect_stdout but redirects the stderr stram instead

see redirected_stdout ()

pytb.io.redirected_stdout (file: Union/[str, TextlO, pytb.io.Tee]) — Generator[TextlO, None, None]
ContextManager that redirects stdout to a given file-like object and restores the original state when leaving the
context

Parameters file — string or file-like object to redirect stdout to. If passed a string, the file is
opened for writing and closed after the contextmanager exits

>>> import io
>>> outfile = i1i0.StringIO()
>>> with redirected_stdout (outfile) :
print ('this is written to outfile')
>>> assert outfile.getvalue() == 'this is written to outfile\n'

pytb.io.redirected_stdstreams (file: Union[str, TextlO, pytb.io.Tee]) — Generator[TextIO, None,

None]
redirects both output streams (stderr and stdout) to file

see redirected_stdout ()

pytb.io.render_text (text: str, maxwidth: int = -1) — str
Attempt to render a text like an (potentiall infinitely wide) terminal would.

Thus carriage-returns move the cursor to the start of the line, so subsequent characters overwrite the previous.

3.5. pytb.io module 15

pytb

>>> render_text ('asd\rbcd\rcde\r\ngwe\rert\nl23', maxwidth=2)
'cd\ne \ner\nt \nl2\n3'

Parameters
* text — Input text to render

* maxwidth —if > 0, wrap the text to the specified maximum length using the textwrapper
library

3.6 pytb.itertools module

3.6.1 Flexibly test a number possible configurations of a function

Assume you have a function that takes a number of parameters:

>>> def my_func(a, b, c=2, xxkwargs):
print (' '.join((a, b, c¢)), kwargs)

And you want to call it with multiple parameter combinations

>>> my_params = {
'a': 'al',
'b': ('bl','b2"),
'c¢': ('cl', 'c2"y,
'additional_arg': 'wval'

You can use the named_tuple () function of this module to create any possible combination of the provided pa-
rameters

>>> for params in named_product (my_params) :
.. my_func (xxparams)
al bl cl {'additional_arg': 'val'}

al bl c2 {'additional_arg': 'val'}
al b2 cl {'additional_arg': 'val'}
al b2 c2 {'additional_arg': 'val'}

Excluding some combinations

If some parameter combinations are not allowed, you can use the functions ability to work with nested dicts to over-
write values defined in an outer dict

>>> my_params = {
'a': 'al"',
'b': ('bl','b2"),
et |
'cl': {'b': '"bl'},
'c2': {},
'c3': |
'additional_arg': 'other wval',
'another arg': 'yet another val'}

(continues on next page)

16 Chapter 3. Development

pytb

(continued from previous page)

'additional_arg': 'wval'

>>> for params in named_product (my_params) :
. my_func (xxparams)
al bl cl {'additional_arg': 'val'}

al bl c2 {'additional_arg': 'val'}
al b2 c2 {'additional_arg': 'val'}
al bl ¢3 {'additional_arg': 'other wval', 'another arg': 'yet another wval'}
al b2 c3 {'additional_arg': 'other wval', 'another arg': 'yet another val'}

Note that for c="c1' only b="b1' was used. You can also define new variables inside each dict that only get used
for combinations in this branch.

safe_copy of values
By default, all values are (deep) copied before they are yielded from the generator. This is really useful, as otherwise
any change you make to an object in any combination would change the object for all other combination.

If you have large objects in your combinations however, copying may be expensive. In this case you can use the
safe_copy parameter to control if and which objects should be copied before yielding.

3.6.2 API Documentation

Methods to work with iterables conveniently. (methods that could be in the python stdlib itertools package)

pytb.itertools.named_product (values: Optional[Mapping[Any, Any]] = None, repeat: int = I,
safe_copy: Union[Sequence[str], bool] = True, **kwargs) — Gen-
erator[Any, None, None]

Return each possible combination of the input parameters (cartesian product), thus this provides the same basic
functionality of :meth:itertools.product. However this method provides more flexibility as it:

1. returns dicts instead of tuples

>>> list (named_product (a=('X', 'Y'), b=(1, 2)))
[{lal: lxv, b 1}’ {lal: IXI, b 2}, {vav: IYI’ b l}, {lal: lel b 2}]

2. accepts either a dict or kwargs

>>> list (named_product ({ 'a':('X', 'Y") }, b=(1, 2)))
[{lav: le, b 1}, {lal: IXII b 2}, {vav: va, H'. l}, {lav: le, b 2}]

3. accepts nested dicts

>>> list (named_product (
a=(
{"X': {'"b'":(1,2)1}},
{ryts o

(continues on next page)

3.6. pytb.itertools module 17

pytb

(continued from previous page)

)

[{ra's {'X': {'b': (1, 2)}}}, {'a': {'Y': {'D': (3, 4), 'c': (5,)}}}]

4. accepts scalar values

>>> list (named_product (b="Xy'"', c=('a', 'b")))
[{le: IXYI’ 'Cl: lal}, {lbl: leV, IC’: lbl}}

Parameters
* values — a dict of iterables used to create the cartesian product
* repeat — repeat iteration of the product N-times

* safe_copy — copy all values before yielding any combination. If passed True all values
are copied. If passed False no values are copied. If passed an iterable of strings, only the
values whose key is in the iterable are copied.

* xxkwargs — optional keyword arguments. The dict of keyword arguments is merged with
the values dict, with kwargs overwriting values in values

3.7 pytb.notification module

3.7.1 Setup monitoring for your long running tasks

Automatic task progress and monitoring notification via E-Mail. Especially useful to supervise long-running code
blocks.

Concrete Notifier implementations
The base Not i fy class is an abstract class that implements the general notification management. However, it does
not define how notifications are delivered.

The Framework implements different derived classes with a concrete implementation of the abstract Notify.
_send_notification () method:

NotifyViaEmail Send notifications as emails using an external SMTP server.

NotifyViaStream Write notifications as string to a stream. The stream can be any writable object (e.g. a TCP
or UNIX socket or a io.StringlO instance). When using pythons socket module, use the sockets makefile ()
method to get a writable stream.

Manually sending Notifications

You can send Notification manually using the now () method:

>>> stream = io0.StringIO()

>>> notify = NotifyViaStream("testtask", stream)

>>> # set a custom template used to stringify the notifications
>>> notify.notification_template = "{task} {reason} {exinfo}"
>>> notify.now("test successful")

(continues on next page)

18 Chapter 3. Development

https://docs.python.org/3/library/socket.html#module-socket

pytb

(continued from previous page)

>>> stream.getvalue ()
'testtask test successful '

Notify when a code block exits (on success or failure)

The when_done () method can be used to be notified when a code block exits. This method will always send
exactly one notification when the task exits (gracefully or when a unhandeled exception is thrown) except if the
only_if_ error parameter is True. In this case a graceful exit will not send any notification.

>>>

stream.truncate (0)

>>> _ = stream.seek (0)

>>> with notify.when_done () :
potentially long-running process
pass

>>> stream.getvalue ()

'testtask done '

When an exception occurs, the {exinfo} placeholder is populated with the exception message. The exception is
reraised after the notification is sent and the context exited.

>>> = stream.seek (0)

>>> with notify.when_done() :

.. raise Exception ("ungraceful exit occurred")
Traceback (most recent call last):

Exception: ungraceful exit occurred

>>> stream.getvalue ()
'testtask failed ungraceful exit occurred'

Periodic Notifications on the Progress of long-running Tasks

The every () method can be used to send out periodic notifications about a tasks progress. If the
incremental_output parameter is True only the newly generated output since the last notification is popu-
lated into the {output} placeholder.

>>> _ = stream.seek (0)
>>> notify.notification_template = "{task} {reason} {output}\n"

>>> with notify.every (0.1, incremental_output=True):
time.sleep(0.12)
print ("produced output")
time.sleep(0.22)
>>> print (stream.getvalue () .strip())
testtask progress update <No output produced>
testtask progress update produced output
testtask progress update <No output produced>
testtask done produced output

Notify about stalled code blocks

Often you want to be notified if your long-running task may have stalled. The when_stalled () method tries to
detect a stall and sends out a notification.

3.7. pytb.notification module 19

pytb

A stall is detected by checking the output produced by the code block. If for a specified t imeout no new output
is produced, the code is considered to be stalled. If a stall was detected, any produced output will send another
notification to inform about the continuation.

>>> _ = stream.truncate (0)
>>> _ = stream.seek (0)
>>> notify.notification_template = "{task} {reason}\n"

>>> with notify.when_stalled(timeout=0.1):
time.sleep(0.2)
print ("produced output")
. time.sleep(0.1)
>>> print (stream.getvalue () .strip())
testtask probably stalled
testtask no longer stalled

Notify after any iteration over an lterable

Simply wrap any IterableinNotify.on_iteration_of () to get notified after each step of the iteration has
finished.

>>> _ = stream.truncate (0)
>>> _ = stream.seek (0)
>>> notify.notification_template = "{reason}\n"

>>> for x in notify.on_iteration_of (range(5), after_every=2):
pass

>>> print (stream.getvalue () .strip())

Iteration 2/5 done

Iteration 4/5 done

Iteration 5/5 done

Note: Because of how generators work in python , it is not possible to handle exceptions that are raised in the loop
body. If you want to get notified about errors that occurred during the loop execution, you need to wrap the whole
loop into a when_done () context with the only_if_ error flagsetto True.

>>> _ = stream.truncate (0)
>>> _ = stream.seek (0)
>>> notify.notification_template = "{reason}\n"

>>> for x in notify.on_iteration_of (range(b5)):

if x == 1:
Ce raise Exception("no notification for this : (")
Traceback (most recent call last):

Exception: no notification for this :(

>>> print (stream.getvalue () .strip())
Iteration 1/5 done

3.7.2 APl Documentation

Automatic task progress and monitoring notification via E-Mail. Especially useful to supervise long-running tasks

class pytb.notification.Notify (task: str, render_outputs: bool = True)
Bases: object

20 Chapter 3. Development

https://stackoverflow.com/questions/44598548/catch-exception-thrown-in-generator-caller-in-python

pytb

A Not 1 fy object captures the basic configuration of how a notification should be handled.

The methods when_done (), every () and when_stalled () are reenterable context managers. Thus a
single Not i £y object can be reused at several places and different context-managers can be reused in the same
context.

Overwrite the method _send_notification () in a derived class to specify a custom handling of the
notifications

Parameters
* task — A short description of the monitored block.

* render_outputs - If true, prerender the oputputs using pytb. io.render_text ()
This may be useful if the captured codeblock produces progressbars using carriage returns

every (interval: Union[int, float, datetime.timedelta], incremental_output: bool = False, caller_frame:

Optional[frame] = None) — Generator[None, None, None]
Send out notifications with a fixed interval to receive progress updates. This contextmanager wraps a

when_done (), so it is guaranteed to send to notify at least once upon task completion or error.
Parameters

* interval - float, int or datetime.timedelta object representing the number
of seconds between notifications

* incremental_output — Only send incremental output summaries with each update.
If False the complete captured output is sent each time

* caller_frame - the stackframe to use when determining the code block for the notifi-
cation. If None, the stackframe of the line that called this function is used

now (message: str) — None
Send a manual notification now. This will use the provided message as the reason placeholder. No
output can be capured using this function.

Parameters message — A string used to fill the { reason} placeholder of the notification

on_iteration_of (iterable: Sequence[_IterType], capture_output: bool = True, after_every: int = I,
caller_frame: Optional[frame] = None) — Generator[_IterType, None, None]
Send a message after each iteration of an iterable. The current iteration and total number of iterations (if
the iterable implements 1en ()) will be part of the reason placeholder in the notification.

for x in notify.on_iteration_of (range(5)):
execute some potentially long-running process on x

Parameters
* iterable - the iterable which items will be yielded by this generator

* capture_output — capture all output to the stdout and stderr stream and append
it to the notification

* after_every - Only notify about each N-th iteration

* caller_frame - the stackframe to use when determining the code block for the notifi-
cation. If None, the stackframe of the line that called this function is used

when_done (only_if_error: bool = False, capture_output: bool = True, caller_frame: Optional[frame]

= None, reason_prefix: str = ”) — Generator[None, None, None]
Create a context that, when exited, will send notifications. If an unhandled exception is raised during

execution, a notification on the failure of the execution is sent. If the context exits cleanly, a notification is
only sentif only_if_errorissetto False

3.7.

pytb.notification module 21

pytb

By default, all output to the stdio and stderr streams is captured and sent in the notification. If you
expect huge amounts of output during the execution of the monitored code, you can disable the capturing
with the capture_output parameter.

To not spam you with notification when you stop the code execution yourself, KeyboardInterrupt
exceptions will not trigger a notification.

Parameters
* only_ if error - if the context manager exits cleanly, do not send any notifications

* capture_output - capture all output to the stdout and stderr stream and append
it to the notification

* caller_frame — the stackframe to use when determining the code block for the notifi-
cation. If None, the stackframe of the line that called this function is used

* reason_prefix — an additional string that is prepended to the reason placeholder
when sending a notification. Used to implement on_iteration of ().

when_stalled (timeout: Unionf[int, float, datetime.timedelta], capture_output: bool = True,

caller_frame: Optional[frame] = None) — Generator[None, None, None]
Monitor the output of the code bock to determine a possible stall of the execution. The execution is

considered to be stalled when no new output is produced within t imeout seconds.

Only a single notification is sent each time a stall is detected. If a stall notification was sent previously,
new output will cause a notification to be sent that the stall was resolved.

Contrary to the every () method, this does not wrap the context into a when_done () function, thus
it may never send a notification. If you want, you can simply use the same Not i fy to create mutliple
contexts:

with notify.when_stalled(timeout), notify.when_done () :
execute some potentially long-running process

However, it will always send a notification if the code block exits with an exception.
Parameters

* timeout — maximum number of seconds where no new output is produced before the
code block is considiered to be stalled

* capture_output — append all output to stdout and stderr to the notification

* caller_frame - the stackframe to use when determining the code block for the notifi-
cation. If None, the stackframe of the line that called this function is used

class pytb.notification.NotifyViaEmail (fask: str, email_addresses: Optional[Sequence[str]]
= None, sender: Optional[str] = None, smtp_host:
Optional[str] = None, smtp_port: Optional[int] =

None, smtp_ssl: Optional[bool] = None)
Bases: pytbh.notification.Notify

A NotifyViaEmail object uses an SMTP connection to send notification via emails. The SMTP server is
configured either at runtime or via the effective . pytb.config files notify section.

Parameters

* email_addresses —asingle email address or a list of addresses. Each entry is a seperate
recipient of the notification send by this Notify

* task — A short description of the monitored block.

* sender - Sender name to use. If empty, use this machines FQDN

22 Chapter 3. Development

pytb

* smtp_host — The SMTP servers address used to send the notifications
* smtp_port — The TCP port of the SMTP server
* smtp_ssl — Whether or not to use SSL for the SMTP connection
All optional parameters are initialized from the effective . pytb.config if they are passed None

message_template = 'Hello {recipient},\n{task} {reason}. {exinfo}\n\n{code_block}\n\np
The message template used to create the message content.

You can customize it by overwriting the instance-variable or by deriving your custom Not i fyViakEmail.
The following placeholders are available:

e task

* sender

* recipient

* reason

* exinfo

* code_block

* output

subject_template = '{task} on {sender} {reason}'
The template that is used as subject line in the mail.

You can customize it by the same techniques as the message_template. The same placeholders are
available.

class pytb.notification.NotifyViaStream (task: str;, stream: IO[Any])
Bases: pytbh.notification.Notify

NotifyViaStream will write string representations of notifications to the specified writable st ream. This
may be useful when the stream is a UNIX or TCP socket.

Also useful when when the stream is a 10. St ringIO object for testing.

The string representation of the notification can be configured via the notification template attribute
which can be overwritten on a per-instance basis.

Parameters
* task — A short description of the monitored block.
e stream - A writable stream where notification should be written to.

notification_template = '{task}\t{reason}\t{exinfo}\t{output}\n'
The string that is written to the stream after replacing all placeholders with the notifications properties.

The following placeholders are available
* task
* reason
* exinfo
e code_block

* output

3.7. pytb.notification module 23

pytb

class pytb.notification.Timer (target: Any, *args, **kwargs)
Bases: threading.Thread

A gracefully stoppable Thread with means to run a target function repedatley every X seconds.
Parameters
* target — the target function that will be executed in the thread
* xargs — additional positional parameters passed to the target function
* xxkwargs — additional keyword parameters passed to the target function

call_every (interval: Union[int, float, datetime.timedelta]) — None
start the repeated execution of the target function every interval seconds. The target function is first
invoked after waiting the interval. If the thread is stopped before the first interval passed, the target function
may never be called

Parameters interval — float, int or datetime.timedelta object representing the
number of seconds between invocations of the target function

run () — None
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

stop () — None
schedule the thread to stop. This is only meant to be used to stop a repeated scheduling of the target funtion
started via call_every () but will not interrupt a long-running target function

Raises RuntimeError — if the thread was not started via call_every ()

3.8 pytb.rdb module

3.8.1 Remote Debugging
Sometimes you do not have a nice way to control the debugger on the local machine. For example in a jupyter notebook
the readline interface is horrible to use.

The debugger is designed to act as a drop-in replacement for the standard pdb debugger. However, when starting a
debug session (e.g. using set_trace ()) the debugger opens a socket and listens on the specified interface and port
for a client.

The client can either be a simple TCP socket tool (like net cat) or the provided RdbClient.

The debugger can be invoked by calling set_trace ()

3.8.2 API Documentation

A remote debugging module for the python debugger pdb

class pytb.rdb.RdbClient (host: Optional[str] = None, port: Optional[int] = None)
Bases: object

A simple netcat like socket client that can be used as a convenience wrapper to connect to a remote debugger
session.

If host or port are unspecified, they are laoded from the current pytb.config.Config s [rdb] section

24 Chapter 3. Development

pytb

pytb.rdb.install_hook () — None
Installs the remote debugger as standard debugging method and calls it when using the builtin breakpoint()

pytb.rdb.set_trace (*args, host: Optional[str] = None, port: Optional[int] = None, patch_stdio: Op-
tional[bool] = None, **kwargs) — None
Opens a remote PDB on the specified host and port if no session is running. If a session is already running (was

started previously and a client is still connected) the session is reused instead.
Parameters patch_stdio — When true, redirects stdout, stderr and stdin to the remote socket.

pytb.rdb.uninstall_hook () — None
Restore the original state of sys.breakpointhook. If install hook () was never called before, this is a noop

3.9 pytb.schedule module

3.9.1 Run commands on certain dates with a cron-like date expression
You can use the at () and every () as a decorator for to turn that function into a scheduled thread object. Use the
start_schedule () start the scheduled execution.

You can use the stop () to stop any further scheduling. The decorated function is also still directly callable to execute
the task in the calling thread.

3.9.2 API Documentation

A simple task scheduling system to run periodic tasks

class pytb.schedule.Schedule (target: Callable[][...], Any], interval: Generator[datetime.datetime,

None, None])
Bases: threading.Thread

This represents a reoccuring task, exceuting target every time the schedule is due. The target is run in an
extra thread by default. If you stop the schedule while the target function is running, the thread is canceled after
finishing its current run.

Parameters
* target — The target function to execute each time the schedule is due

* interval — A generator yielding datetime objects that determine when the schedule is
due. When this generator is exhausted, the schedule stops. Datetime objects in the past are
simply ignored and the next value from the generator is used to schedule the job.

next schedule () — datetime.datetime
Return the datetime object this schedule is due

run () — None
Start the schedule execution in an extra thread. The target function is called, passing all arguments supplied
to this call.

start_schedule (*args, **kwargs) — None
Start the scheduler and pass all supplied arguments to the target function each time the schedule is due

stop () — None
Stop the async execution of the schedule, cacnel all future tasks

3.9. pytb.schedule module 25

pytb

>

pytb.schedule.at (minute: str = '*’, hour: str = '*’, day: str = ’*’, month: str =
"#7) — Callable[[...], pytb.schedule.Schedule]
run the task every time the current system-time matches the cron-like expression. Check the documentation for
parse_cron_spec () for the supported syntax.

*' weekday: str =

pytb.schedule.every (interval: datetime.timedelta, start_at: Optional[datetime.datetime] = None) —

Callable[[...], pytb.schedule.Schedule]
Run a task repeadetly at the given interval

Parameters
e interval - run the command this often the most

* start_at — run the command for the first time only after this date has passed. If not
specified, run the command immediatley

pytb.schedule.parse_cron_spec (spec: str, max_value: int, min_value: int = 0) — Sequence[int]
Parse a string of in a cron-like expression format to a sequence accepted numbers. The expression needs to have
one of the following forms:

* i sequence contains only the element i

* « indicates that all values possible for this part are included
e i, 7,k specifies a list of possible values

* i-7 specifies a range of values including ;j

* i-7j/s additionally specifies the step-size

Parameters
» spec — The cron-like expression to parse

* max_value — The maximum value allowed for this range. This is needed to specify the
range using the ‘*’ wildcard

* min_value — The minimum allowed value

Raises ValueError — if the spec tries to exceed the limits

Example:

>>> list (parse_cron_spec('5', max_value=7,))
>>> list (parse_cron_spec('*', max_value=7,))
[Ol ll 2[3[4! 5’ 6/ 7}

>>> list (parse_cron_spec('l-4', max_value=7,))
(1, 2, 3, 41

>>> list (parse_cron_spec('1-4/2", max_value=7,))
[1, 31

3.10 Indices and tables

* genindex

¢ modindex

26 Chapter 3. Development

pytb

e search

3.10. Indices and tables

27

pytb

28 Chapter 3. Development

Python Module Index

pytb.
pytb.
pytb.
pytb.
pytb.
pytb.

config, 12

io, 14
itertools, 17
notification, 20
rdb, 24
schedule, 25

29

pytb

30 Python Module Index

Index

A

at () (in module pytb.schedule), 25

C

call_every () (pytb.notification.Timer method), 24
close () (pyth.io.Tee method), 14

Config (class in pytb.config), 12
config_file_name (pyth.config.Config attribute), 12
current_config (in module pytb.config), 12

D

default_config_file (pyth.config.Config at-
tribute), 12

E

every () (in module pytb.schedule), 26
every () (pytb.notification.Notify method), 21

F

flush () (pyth.io.Tee method), 14

G

get_config_file_locations()
(pytb.config.Config static method), 12
getlist () (pythb.config.Config method), 12

install_hook () (in module pytb.rdb), 25

M

message_template (pyth.notification.NotifyViaEmail
attribute), 23

mirrored_stdout () (in module pytb.io), 15

mirrored_stdstreams () (in module pytb.io), 15

N

named_product () (in module pytb.itertools), 17
next_schedule () (pytb.schedule.Schedule method),
25

notification_template
(pytb.notification.NotifyViaStream
23

Notify (class in pytb.notification), 20

NotifyViaEmail (class in pytb.notification), 22

NotifyViaStream (class in pytb.notification), 23

now () (pytb.notification.Notify method), 21

O

on_iteration_of ()
method), 21

attribute),

(pytb.notification.Notify

P

parse_cron_spec () (in module pytb.schedule), 26
pytb.config (module), 12

pytb.io (module), 14

pytb.itertools (module), 17
pytb.notification (module), 20

pytb.rdb (module), 24

pytb.schedule (module), 25

R

RdbClient (class in pytb.rdb), 24
redirected_stderr () (in module pytb.io), 15
redirected_stdout () (in module pytb.io), 15
redirected_stdstreams () (in module pytb.io), 15
reload () (pytb.config.Config method), 12
render_text () (in module pytb.io), 15

run () (pytb.notification. Timer method), 24

run () (pytb.schedule.Schedule method), 25

S

Schedule (class in pytb.schedule), 25

set_trace () (in module pytb.rdb), 25

start_schedule () (pytb.schedule.Schedule
method), 25

stop () (pytb.notification.Timer method), 24

stop () (pytb.schedule.Schedule method), 25

31

pytb

subject_template (pyth.notification.NotifyViaEmail
attribute), 23

T

Tee (class in pytb.io), 14
Timer (class in pytb.notification), 23

U

uninstall_hook () (in module pytb.rdb), 25

W

when_done () (pytb.notification.Notify method), 21

when_stalled() (pytb.notification.Notify method),
22

write () (pyth.io.Tee method), 15

32 Index

	Quickstart
	Installation
	Development
	Command Line Interface
	pytb.config module
	pytb.core module
	pytb.importlib module
	pytb.io module
	pytb.itertools module
	pytb.notification module
	pytb.rdb module
	pytb.schedule module
	Indices and tables

	Python Module Index
	Index

